
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations,
pages 71–75, Dublin, Ireland, August 23-29 2014.

CLAM: Quickly deploy NLP command-line tools on the web

Maarten van Gompel
Centre for Language Studies (CLS)

Radboud University Nijmegen
proycon@anaproy.nl

Martin Reynaert
CLS, Radboud University Nijmegen

TiCC, Tilburg University
reynaert@uvt.nl

http://proycon.github.io/clam

Abstract

In this paper we present the software CLAM; the Computational Linguistics Application Medi-
ator. CLAM is a tool that allows you to quickly and transparently transform command-line NLP
tools into fully-fledged RESTful webservices with which automated clients can communicate, as
well as a generic webapplication interface for human end-users.

1 Introduction

In the field of Natural Language Processing, tools often come in the form of command-line tools aimed at
UNIX-derived systems. We consider this good practice in line with the UNIX philosophy (McIlroy et al.,
1978) which states, amongst others, that programs should 1) do one thing and do it well, and 2) expect
the output of one program to be the input of another. This can be rephrased as the Rule of Modularity:
write programs consisting of simple parts, connected by well-defined interfaces (Raymond, 2004).

Programs operating at the command-line offer such modularity, making them ideally suitable for in-
tegration in a wide variety of workflows. However, the command-line may not be the most suitable
interface for non-specialised human end-users. Neither does it by itself facilitate usage over network un-
less explicit server functionality has been programmed into the application. Human end-users often want
a Graphical User Interface (GUI), a special instance of which is a Web User Interface. Yet for automated
clients operating over a network, such an interface is a cumbersome barrier, and these instead prefer a
properly formalised webservice interface. CLAM offers a solution to this problem, when all there is is a
simple NLP command-line tool.

CLAM finds application in areas where people want to make their software available to a larger public,
but a command-line interface is not sufficient. Setting up your tool may be complicated, especially if
there are many dependencies or the target audience does not use Linux machines. CLAM is ideally suited
for quick demo purposes, or for integration into larger workflow systems. It removes the burden from
the software developer (you) to have to implement a server mode and build a GUI or web-interface, thus
saving precious time.

2 System architecture

The Computational Linguistics Application Mediator (CLAM) is a tool that wraps around your
command-line interface and allows you to very quickly and transparently turn your program into 1) a
RESTful (Fielding, 2000) webservice with which automated clients can communicate, as well as 2) a
generic web user interface for human end-users. Just like an actual clam is a shell around the animal that
inhabits it, which most onlookers never see directly, CLAM wraps around your sofware, providing extra
functionality and hardening it through its built-in security mechanism. You do not need to modify your
original software in any way, it is always taken as a given, you merely need to describe it.

This work is licensed under a Creative Commons Attribution 4.0 International Licence: http://creativecommons.
org/licenses/by/4.0/

71

An NLP command-line tool can usually be described in terms of input files, output files and parameters
influencing its run. Parameters may either be global parameters, pertaining to the system as a whole, or
local parameters which act as metadata for specific input files. File formats are never dictated by CLAM
itself, but are up to the service provider to define.

Figure 1: Schematic overview of the CLAM architecture

CLAM discerns three states, which also reflect the stages in which the end-user or automated client
interacts with the system

1. The system is ready to accept files for input and input parameters
2. The system is running
3. The system is done and the output files are offered for presentation/download.

Any tool that can be described in these terms can be used with CLAM. The system has been designed
specifically to work with software that may take quite some time to process or runs large batches. Stage
two therefore is not confined to lasting mere seconds as is custom in web-based applications, but may
last as long as hours, days, or any duration that the end-user is willing to wait. Also, end-users need not
maintain a connection to the server. Human end-users may close their browser and return at will, and
automated clients simply poll the system’s status with a certain interval.

You are not limited to just a single run of your system; you may set it up to allow upload and processing
of multiple files and run them in batch fashion. This approach is common in processing text files for
purposes such as tokenisation or any form of tagging.

In order for CLAM to turn a command-line tool into a webservice, developers are expected to provide
two things in addition to the actual tool:

1. Service configuration - This specifies everything there is to know about your application, it defines
what the input will be, what the output will be, and what parameters the system may take. Input
and output are always in the form of files, adhering to whatever format you desire. The web user
interface, however, also optionally offers a text field for users to create files on the fly.

72

2. System wrapper script - This is a small script that CLAM will invoke to start your system. It acts
as the glue between CLAM and your actual application and may do some necessary interpretation
and transformation of parameters to suit the command-line interface of your application.

A generic client for communicating with the webservice is already provided, more specific clients can
be written using the CLAM API (Python) to greatly facilitate development. The architecture of CLAM
is schematically visualised in Figure 1.

CLAM is a multi-user system, although out-of-the-box it simply uses an “anonymous” user and re-
quires no authentication. Each user can create an arbitrary number of projects. One project corresponds
to one run of the system, which may be one large batch depending on how you configure your service.
Users can always return to earlier projects and inspect input files and output files, until they explicitly
delete the project.

2.1 Service Configuration
In the service configuration file, you specify precisely what kind of input goes into the system, and what
kind of output goes out: this results in a deterministic and thus predictable webservice. With any input
and output files, arbitrary metadata can be associated. For input files, metadata is created from parameters
that can be set by users, these are rendered as input fields in the web interface. You can specify how this
metadata is carried over to output files. Additionally, as part of the metadata, provenance data is generated
for all output files. These are both stored in a simple and straightforward XML format.

All these definitions are specified in so-called profiles. A profile defines input templates and output
templates. These can be seen as “slots” for certain filetypes and their metadata. A small excerpt of
a profile for a simple translation system with some associated metadata is shown in Figure 2. A full
discussion of its syntax goes beyond the scope of this paper, but is explained at length in the manual.

Profile(InputTemplate(’maininput’, PlainTextFormat,
"Translator input: Plain-text document",
StaticParameter(
id=’encoding’,name=’Encoding’,description=’The character encoding of the file’,
value=’utf-8’

),
ChoiceParameter(
id=’language’,name=’Language’,description=’The language the text is in’,
choices=[(’en’,’English’),(’nl’,’Dutch’),(’fr’,’French’)]),

),
extension=’.txt’,
multi=True

), OutputTemplate(’translationoutput’, PlainTextFormat,
"Translator output: Plain-text document",
CopyMetaField(’encoding’,’maininput.encoding’)
SetMetaField(’language’,’de’),
removeextension=’.txt’,
extension=’.translation’,
multi=True

))

Figure 2: An excerpt of a fictitious profile for a simple translation system from English, Dutch or French
to German. The attribute multi=True states that multiple files of this type may be submitted during a
single run

Global parameters to the system are specified independently of any profiles. Consider a global pa-
rameter that would indicate whether or not want the fictitious translation system seen in Figure 2 to be
case-sensitive, and take a look at the following example1:
PARAMETERS = [

(’Translation parameters’, [
BooleanParameter(id=’casesensitive’,name=’Case Sensitivity’,
description=’Enable case sensitive behaviour?’)

])]

1Parameters are always grouped into named groups, “Translation parameters” is just the label of the group here

73

2.2 System Wrapper

Communication between CLAM and your command-line tool proceeds through a system wrapper script.
The service configuration file defines what script to call and what variables, pre-defined by CLAM, to
pass to it:

COMMAND = "mywrapper.py $DATAFILE $OUTPUTDIRECTORY"

This is then executed whenever a user runs a project. It is the job of the system wrapper script to
invoke your actual application.

There are two main means of communicating the parameters to the system wrapper: one is to make
use of the data file ($DATAFILE), which is an XML file that contains all input parameters. It can be
parsed and queried effortlessly using the CLAM API, provided you write your wrapper script in Python.
The other way, more limited, is to specify parameter flags for your global parameters2 in the service
configuration, and simply let CLAM pass all global parameters as arguments on the command line:

COMMAND = "mywrapper.pl $INPUTDIRECTORY $OUTPUTDIRECTORY $PARAMETERS"

By passing the input directory, the system wrapper script can simply look for its input files there.

3 Extensions

CLAM can be extended by developers in several ways. One is to write viewers, which take care of the
visualisation of output files for a specific file format, and are used by the web user interface. Viewers
may be implemented as internal Python modules, or you can link to any external URL which takes care
of the visualisation. Another extension is converters, these allow users to upload an input file in one
file type and have it automatically converted to another. Converters for PDF and Word to plain text are
already provided through third party tools.

4 Technical Details

CLAM is written in Python (2.6 or 2.7), (van Rossum, 2007). It comes with a built-in HTTP server for
development purposes, allowing you to quickly test and adjust your service. Final deployment can be
made on common webservers such as Apache, Nginx or lighthttpd through the WSGI mechanism. The
service configuration file itself is by definition a Python file calling specific configuration directives in
the CLAM API. The system wrapper script may be written in any language, but Python users benefit as
they can use the CLAM API which makes the job easier. Projects and input files are stored in a simple
directory structure on disk, allowing your tool easy access. No database server is required.

The webservice offers a RESTful interface (Fielding, 2000), meaning that the HTTP verbs GET, POST,
PUT and DELETE are used on URLs that represent resources such as projects, input files, output files.
The web application is implemented as a client-side layer on the webservice. It is presented through XSL
transformation (Clark, 1999) of the webservice XML output.

User authentication is implemented in the form of HTTP Digest Authentication, which ensures that
the password is sent in encrypted form over the network even with servers where HTTPS is not used.
HTTPS support is not present in CLAM itself but can be configured in the encompassing webserver. The
underlying user database can be specified either directly in the service configuration file or in a table in
a Mysql database, but it is fairly easy to replace this and communicate with another external database of
your choice instead. There is also support for propagating credentials from another authentication source
such as Shibboleth3, allowing for integrating with single-sign-on scenarios. Implementation of OAuth24

will follow in a later version.
CLAM is open-source software licensed under the GNU Public License v3. Both the software as

well as the documentation can be obtained through the CLAM website at github: http://proycon.
github.io/clam .

2caveat: this does not work for local parameters, i.e. parameters pertaining to files
3http://shibboleth.net
4http://oauth.net/2/

74

5 Related Work

As far as we know, the only tool comparable to CLAM is Weblicht (Hinrichs et al., 2010). Both tools are
specifically designed for an NLP context. CLAM, however, is of a more generic and flexible nature and
may also find easier adoption in other fields.

When it comes to data formats, Weblicht commits to a specific file format for corpus data. CLAM
leaves file formats completely up to the service providers, although it does come, as a bonus, with a
viewer for users of FoLiA (van Gompel and Reynaert, 2013).

Weblicht is Java-based whereas CLAM is Python-based, which tends to be less verbose and more
easily accessible. System wrapper scripts can be written in any language, and service configuration files
simply consist of directives that require virtually no Python knowledge.

All in all CLAM offers a more lightweight solution than Weblicht, allowing webservices to be set
up more easily and quicker. Nevertheless, CLAM offers more power and flexibility in doing what it
does: wrapping around command-line tools, its webservice specification is more elaborate than that of
Weblicht. On the other hand, CLAM deliberately does not go as far as Weblicht and does not offer a
complete chaining environment, which is what Weblicht is. In this we follow the aforementioned UNIX
philosophy of doing one thing well and one thing only. Service chaining certainly remains possible and
CLAM provides all the information to facilitate it, but it is left to other tools designed for the task. CLAM
has been successfully used with Taverna (Hull et al., 2006) in the scope of the CLARIN-NL project “TST
Tools for Dutch as Webservices in a Workflow” (Kemps-Snijders et al., 2012).

Acknowledgements

CLAM support and development is generously funded by CLARIN-NL (Odijk, 2010), and is being
used by various projects in the Dutch & Flemish NLP communities, whose feedback and support have
contributed to its success.

References
J. Clark. 1999. XSL transformations (XSLT) version 1.0. Technical report, 11.

R. T. Fielding. 2000. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation. University of California, Irvine.

M. Hinrichs, T. Zastrow, and E. W. Hinrichs. 2010. Weblicht: Web-based LRT services in a Distributed eScience
Infrastructure. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios
Piperidis, Mike Rosner, and Daniel Tapias, editors, LREC. European Language Resources Association.

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn. 2006. Taverna: a tool for
building and running workflows of services. Nucleic Acids Res, 34(Web Server issue):729–732, July.

M. Kemps-Snijders, M. Brouwer, J.P. Kunst, and T. Visser. 2012. Dynamic web service deployment in a cloud
environment. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan, Bente Mae-
gaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, LREC, pages 2941–2944. European Language
Resources Association (ELRA).

M. D. McIlroy, E. N. Pinson, and B. A. Tague. 1978. Unix time-sharing system forward. The Bell System
Technical Journal, 57(6, part 2):p.1902.

J. Odijk. 2010. The CLARIN-NL project. In Proceedings of the Seventh International Conference on Language
Resources and Evaluation, LREC-2010, pages 48–53, Valletta, Malta.

E. S. Raymond. 2004. The Art of Unix Programming.

M. van Gompel and M. Reynaert. 2013. FoLiA: A practical XML Format for Linguistic Annotation - a descriptive
and comparative study. Computational Linguistics in the Netherlands Journal, 3.

G. van Rossum. 2007. Python programming language. In USENIX Annual Technical Conference. USENIX.

75

